

Course Syllabus

1	Course title	Radiation Physics					
2	Course number	0302265					
3	Credit hours	3 (theory)					
	Contact hours (theory, practical)	3					
4	Prerequisites/corequisites	Physics 0302101 & Physics 0302102					
5	Program title	BSc					
6	Program code						
7	Awarding institution	The University of Jordan					
8	School	Science					
9	Department	Physics					
10	Course level	200					
11	Year of study and semester(s)	1 st semester, 2022-2023					
12	Other department(s) involved in teaching the course	None					
13	Main teaching language	English					
14	Delivery method	x□Face to face learning □Blended □Fully online					
15	Online platforms(s)	□Moodle x□Microsoft Teams □Skype □Zoom □Others					
16	Issuing/Revision Date	9/10/2022					

مركز الاعتماد 17 Course Coordinator:

Name: Prof. Jamal Sharaf Contact hours: Sun, Tue & Thursday 11:00 – 12:30

Office number: M 220 Phone number: Ex, 22056

Email:j_sharaf@ju.edu.jo

18 Other instructors:

Name:	
Office number:	
Phone number:	
Email:	
Contact hours:	
Name:	
Office number:	
Phone number:	
Email:	
Contact hours:	

19 Course Description:

As stated in the approved study plan.

Radiation sources, interactions and energy deposition by ionizing radiation in matter; concepts, quantities and units in radiation physics. Isotope production, measurement of activity, standards, Spectrometry, measurement techniques and detectors. Precision, errors, detection limits. Radioanalytical methods. Principles and methods of radiation dosimetry. Radiation detection instrumentation.

20 Course aims and outcomes:

A - Aims: Understanding the fundamental of radiation physics including the production of ionizing radiation and its interaction with matter as well as discussing topics in radiation dosimetry, instrumentation, applications and radiation protection.

B - Students Learning Outcomes (SLOs):

- **SLO** (1) Identify radiation types, production and sources, explaining the nature of ionizing radiation and how it is measured and monitored.
- **SLO** (2) Understand cell biology and the effects of radiation on it. Recognize molecular and cellular radiation biology, identifying early and late radiation effect and how it can relate to genetics.
- $SLO\left(3\right)$ Describe radiation energy transfer, radiation effects, and radio sensitivity and response.
- **SLO** (4) Define dose limits, equipment design, and management of radiation dose. Along with the units, detection and measurement of radiation.
- **SLO** (5) Understand the need and objectives of a radiation protection plan and radiation safety.
- **SLO** (6) Understand the application of radiation in medicine and industry.

Upon successful completion of this course, students will be able to:

Program SLOs	SLO	SLO	SLO	SLO	SLO	SLO	SLO	SLO	SLO
Course SLOs	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
1. Identify radiation types, production and sources, explaining the nature of ionizing radiation and how it is measured and monitored.	✓				✓				
Understand cell biology and the effects of radiation on it. Recognize molecular and cellular radiation biology, identifying early and late radiation effect and how it can relate to genetics	✓				✓				
Describe radiation energy transfer, radiation effects, and radio sensitivity and response.		✓	✓						
4. Define dose limits, equipment design, and management of radiation dose. Along with the units, detection and measurement of radiation.		√	√						
5. Understand the need and objectives of a radiation protection plan and radiation safety.						√			✓
6. Understand the application of radiation in medicine and industry.					✓	✓			

Intended Learning Outcomes (ILOs): Upon successful completion of this course students will be able to demonstrate the understanding of:

- 1. Radiation concepts,
- 2. Radiation detection, monitoring, and measurement,
- 3. Biological effects of radiation and dosimetry,
- 4. Application of radiation in medicine and industry

21. Topic Outline and Schedule:

Week	Lecture	Торіс	Intended Learning Outcome	Learning Methods (Face to Face/Blended/ Fully Online)	Platform	Synchronous / Asynchronous Lecturing	Evaluation Methods	Resources
	1.1	Radiation sources		Face to Face			Written exams	
1	1.2	Natural radioactive						
1	1.3	General properties of alpha, beta and gamma rays						
	2.1	Interaction of charged particles with Matter						
2	2.2	Energy transfer mechanisms						
	2.3	Scattering, excitation and ionisation						
	3.1	Range-energy relationship						
3	3.2	Interaction of X- and gamma rays with matter						
	3.3	Aattenuation and mass energy absorption						

ACCREDITATION & GUALITY ASSURA	NCE CENTER		1		T	Г	
		coefficients					
	4.1	Interaction of neutrons with matter					
4	4.2	Electrically produced radiation: X-ray tube and Particle accelerators					
	4.3	Filtration and beam quality					
	5.1	Radiation detection and measurement					
5	5.2	Gas Filled detectors					
	5.3	scintillation detectors					
	6.1	semiconduct or detectors					
6	6.2	Gamma ray spectrometers NAI(TI)					
	6.3	Gamma ray spectrometers HPGe					
	7.1	Neutron detectors					
7	7.2	Radiation Measuring & Monitoring Instruments					
	7.3	Thermolumin escent					

ACCREDITATION & QUALITY ASSURAN	ICE CENTER	Dosimeters			
		(TLD)			
	8.1	Radiation biology			
8	8.2	Stochastic and deterministic effects of radiation			
	8.3	Radiation Quantities and Units			
	9.1	External radiation hazards,			
9	9.2	Shielding calculation parameters			
	9.3	Internal radiation hazards,			
10	10.1	Protective measures to reduce radiation exposures			
10	10.2	Radiation dosimetry			
	10.3	Absorbed dose, Kerma & exposure			
11	11.1	Equivalent dose &Effective dose			
	11.2	Effective dose			

ACCREDITATION & QUALITY ASSURA	WOLCENTER	calculations			
	11.3	Dosimetry of point source			
	12.1	Neutron dosimetry			
12	12.2	Basic concepts of radiation protection standards			
	12.3	Natural radioactivity in the environment and manmade sources			
	13.1	Dose to individuals from natural radioactivity and manmade sources			
13	13.2	Categories of exposures & risk factors			
	13.3	Dose limits for occupational workers, trainees and general public			
14	14.1	Principles of Diagnostic Radiology			
	14.2	X-ray Imagining			

ACCREDITATION & QUALITY ASSURAN	ICE CENTER				
		Devices			
	14.3	X-ray Imaging Techniques			
	15.1	Final Exam			
15	15.2				
	15.3				

22 Evaluation Methods:

Opportunities to demonstrate achievement of the SLOs are provided through the following assessment methods and requirements:

Evaluation Activity	Mark	Topic(s)	SLOs	Period (Week)	Platform
First Exam	25%	L 1.1 – L 4.3	SLO 1,2,3,5	Week 5	Face to Face
Second Exam	25%	L 5.1 – L 10.1	SLO 6, 9	Week 11	=
Final Exam	%0%	All Topics	SLO 1,2,3,5 6, 9	Week 15	=

23 Course Requirements

(e.g. students should have a computer, internet connection, webcam, account on a specific software/platform...etc): A computer, internet connection and an account on teams.

24 Course Policies:

- A- Attendance policies: Regular attendance at all learning activities is expected, and unsatisfactory attendance may lead to disciplinary action according to the University of Jordan regulations.
- B- Absences from exams and submitting assignments on time: Students may be permitted to make up an exam missed due to illness or other legitimate absence. A doctor's certification before allowing a student to make up an exam due to illness is required.
- C- Health and safety procedures:----
- D- Honesty policy regarding cheating, plagiarism, misbehavior: The University Of Jordan policy will be implemented
- E- Grading policy: First exam: 25%

Second exam: 25%

Final exam: 50%

F- Available university services that support achievement in the course:-----

25 References:

A- Required book(s), assigned reading and audio-visuals:

Atoms, Radiation and Radiation Protection, 3rd edition,

2007, by James E. Turner.

B- Recommended books, materials, and media:

Introduction to Health Physics, 3rd edition, 1996, by

Herman Cember.

Radiation Detection and Measurements, 2nd edition, 1989,

by Knoll.

Name of Course Coordinator: Prof. Jamal Sharaf Signature: Date: 9/10/2022
Head of Curriculum Committee/Department: Signature:
Head of Department: Signature:
-
Head of Curriculum Committee/Faculty: Signature:
-
Dean: Signature: